Many of our customers include machine shops who prefer to consign aluminum components to Altair Technologies for brazing. In order to provide a high quality braze joint, it is very important the components are properly prepared. I can’t emphasize this enough and all too often inexperienced customers compare vacuum aluminum brazing to torch brazing having little concern for the machining of parts to be brazed. For the sake of this Post, we’ll assume the assembly to be brazed only has horizontal braze joints. Components made from Al-6061, Al-1100, and 3000 series Al are the most common types of Aluminum we see.

Here are some basic requirements/guidelines and things to consider :

  • The mating surfaces to be vacuum aluminum brazed must be flat within 0.003 inches (max).
  • Milled or turned surfaces with a 32 to 64 micro-inch surface finish work best. Jitterbugging with aluminum-oxide paper is OK.
  • Do not use any lapping compounds on surfaces to be brazed.
  • Machining can impart stress into the Aluminum components, which will be released (causes warpage) during the thermal cycle of the braze run.
  • There may be some warping and there will be some indentation from the local pressure points and braze blush, caused by the braze alloy that is being squashed out of the braze joint. Therefore it is imperative that the components have at least 0.050 inches of excess material to be final machined after brazing.
  • The brazed assembly will be annealed and usually we will send the assembly to be heat-treated to a T6 before final machining.
  • The heat treating operation can also cause warpage.
  • Al-1100 can not be heat treated.
  • Aluminum components to be brazed need to be light chemical etch and then sealed in a suitable plastic bag with an inert gas. I can not over emphasize how important it is to have your parts cleaned by a reputable Chem Cleaning House (we can make some recommendations).
  • Aluminum forms an oxide in air at room temperature and in order to get a high quality braze joint, the oxide must be completely removed allowing for a bond to the native metal surfaces.
  • Braze runs usually take > 5 hours from start to finish.
  • In order to accurately measure the temperature of the assembly being brazed, we highly recommend placing a 0.075 inch diameter thermocouple hole on one of the outer vertical surfaces.
  • If your design has a cooling channel, make sure there is a vent hole (larger the better) that will allow the vacuum furnace to pull a vacuum on the channel once the parts are assembled for brazing. In cases where you have a disk-shaped component dropping into a C’Bore, the vent hole keeps air from being trapped, making it very difficult to get the mating surfaces in intimate contact. These vent holes are also needed for heat treating.
  • The surfaces to be brazed must see adequate pressure in order to braze properly.
  • The braze filler or alloy contains a little Si, which lowers its melting temperature below that of the parent aluminum materials. During the braze run, some Si will vaporize into the vacuum atmosphere and some will diffuse into the parent material, leaving a small transition zone on either side of the braze joint. The resulting braze joint is very thin and almost identical in composition to the mating aluminum components.
  • Brazing aluminum to other types of refractory metals can be tricky due to the brittle intermetallic. Some metals like Titanium braze well with aluminum, however if you need to braze Copper to aluminum, it’ll require our innovative, proprietary process.

Depending on your design, the requirements and guidelines above may be more than adequate to helpus give you hig quality brazed assemblies. It is always a good idea to have our engineers review your drawings and of course you always welcome to respond to this post with specific questions.

4 thoughts on “Vacuum Aluminum Brazing 101

  1. Robert says:

    Sir, what about those aluminum brazing rods I saw at the Alaska State fair? Are they the real deal or just a carnies money making scheme?


  2. curtis allen says:

    We don’t supply brazing rods or brazing products, so I couldn’t give you a definitive answer. When you say “rod” it infers you are welding aluminum and not brazing aluminum. We buy most of our alloy from Lynch Metals, so you might want to give them a call and see what they have to offer. Good luck!

  3. Yu-min Lin says:


    How difficult is it to braze a 0.003″ thick Aluminum 1235 foil or Nickel foil to a 0.003″ stainless steel foil? Which process is best for this brazing?



  4. cferrari says:

    Hi Yu-min-

    In general, vacuum or hydrogen brazing (no flux) these material combinations is possible, with the aluminum-to-stainless arrangement requiring some special techniques and material preparations. Solely comparing the CTE properties, the nickel material is better suited for stainless steel.

    Depending on the geometries, the minimal thickness of the foils you are requesting will pose some challenges with brazing. I am anticipating you are interested in creating a metal layer cladding? At Altair, we have used cladding for various project developments. To assist with technical details for metal cladding, we recommend contacting our friends at:

    Technical Materials, Inc
    Ask for: Barry Njoes (401-288-0672) or Kelley Mello (401-288-0651)

    Or visit their website:

    Best of luck with your project.


Comments are closed.